
E) DRAŽICE 125 Jahre

PUFFERSPEICHER

Die Speicherbehälter werden einschließlich Wärmedämmung geliefert

Die Toleranz aller aufgeführten Abmessungen entspricht der ČSN ISO 2768-c Stutzen der WQ/H-Kreise = Stutzen der Wärmequellen und Heizungskreise Anm.: * Durch Berechnung abgeleiteter Wert

AM ANFANG STAND DER EINFACHE GEDANKE

den sparsamsten und am wenigsten störanfälligen Warmwasserbereiter – den besten Boiler herzustellen. Jedes Jahr denken wir, dass wir das Ziel erreicht haben. Und trotzdem stellen wir in jedem folgenden Jahr bessere Warmwasserbereiter (Boiler), Pufferspeicher, Heizkörper... her.

Maximaler Anwenderkomfort, Energiesparsamkeit, Umweltverantwortung – das sind die Haupttriebmotoren bei unserer alltäglichen Arbeit.

PUFFERSPEICHER

dienen der Akkumulation der überschussigen Wärme von ihrer Quelle. Die Wärmequellen können Festbrennstoffkessel, Wärmepumpen, Solarkollektoren, Kamineinsätze, etc.) sein. Einige Speichertypen ermöglichen auch einen kombinierten Anschluss von mehreren Wärmequellen.

DIE SPEICHERTYPEN NAD UND NADS

(ohne Brauchwasserbereitung)

dienen lediglich der Speicherung der Wärme im Heizsystem

DIE SPEICHERTYPEN NADO UND NADOS

(mit Brauchwasserbereitung)

ermöglicht auch die indirekte Erwärmung des Brauchwassers oder seine Vorwärmung für einen weiteren Warmwasserbereiter

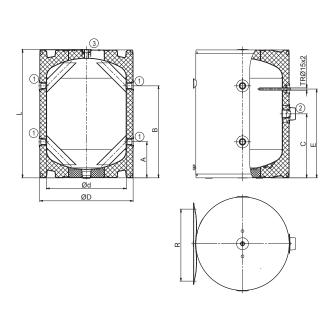
INHALT

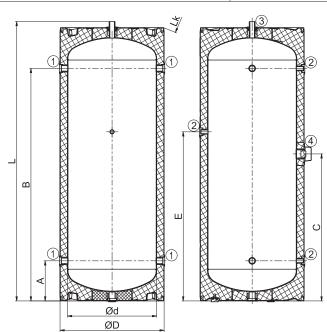
PUFFERSPEICHER /BEHÄLTER/	8	PUFFERSPEICHER NAD v1
Ohne Brauchwasserbereitung	10	PUFFERSPEICHER NAD v2
	11	PUFFERSPEICHER NAD v3
	12	PUFFERSPEICHER NADS v3
	13	PUFFERSPEICHER NAD v4
PUFFERSPEICHER /BEHÄLTER/	16	PUFFERSPEICHER NADO v1
Mit Brauchwasserbereitung	18	PUFFERSPEICHER NADOS v1
	20	PUFFERSPEICHER NADO v2
	22	PUFFERSPEICHER NADOS v2
	24	PUFFERSPEICHER NADO v6
	26	PUFFERSPEICHER NADO v11
ZUBEHÖR	30	WÄRMEDÄMMUNG NEODUL LB PP
	31	IPS PROTECTX
	32	ORIGINALTEILE AUS DRAŽICE
	36	ZUBEHÖRTABELLEN
WEITERE PRODUKTE	40	PHOTOVOLTAIK-LÖSUNG
	41	WARMWASSERSPEICHER
	42	KLIMAANLAGE - SPLIT UND MULTISPLIT

PUFFERSPEICHER

OHNE BRAUCHWASSERBEREITUNG

- Typen: 50, 100, 200
- Der Tank wird mit einer nicht abnehmbaren Wärmedämmung geliefert
- Geeignet als Ausgleichsbehälter zu Heizsystemen mit Wärmepumpen
- Auch für Kühlsysteme geeignet
- Behälter kann mit der Heizeinheit TJ ¾" ausgerüstet werden





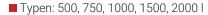
Stutzenabmessungen	NAD 50 v1	NAD 100 v1	NAD 200 v1
Stutzen 1	1" Innen	1" Innengewinde	
Stutzen 2	1 ½" Inne	½" Innengewinde	
Stutzen 3	½" Innen	1" Außengewinde	
Stutzen 4	-	1 ½" Innengewinde	

Technische Parameter		NAD 50 v1	NAD 100 v1	NAD 200 v1		
Bestellnummer		110580391	1108803102	1107803191		
Gesamtvolumen des Behälters	[1]	50	120	208		
Gewicht incl. Wärmedämmung (ohne Wasser)	[kg]	25	41	80		
Max. Betriebstemperatur / Überdruck im Behälter	[°C] / [bar]		90 / 3			
Dicke - Wärmedämmung (Polyurethan)	[mm]	42				
Wärmeleitfähigkeit - Wärmedämmung (Polyurethan)	[W•m ⁻¹ •K ⁻¹]		0,022			
Max. Anzahl × Leistung TJ %"	[ks] × [kW]	1 × 3,3	1 × 3,3 1 × 6			
Energieeffizienzklasse (Polyurethan)		В С				
Statischer Verlust (Polyurethan)	[W]	31	41	82		

Behälterabmessungen		NAD 50 v1	NAD 100 v1	NAD 200 v1
Behälterdurchmesser	Ød	440	500	500
Behälterdurchmesser mit Wärmedämmung	ØD	524	584	584
Gesamthöhe des Behälters	L	561	803	1387
Kipphöhe	L _K	_	_	1470
Ablassstutzen	A	215	225	225
Stutzen WQ/H-Kreise	В	345	575	1125
Stutzen der Heizeinheit TJ %"	С	265	400	675
Stutzen für Thermostat-Tauchhülse	E	365	555	795
Abstand Universalaufhängung	R	300-310, 350-	_	

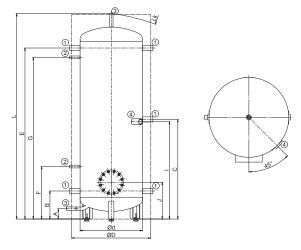
NAD 50, 100 v1

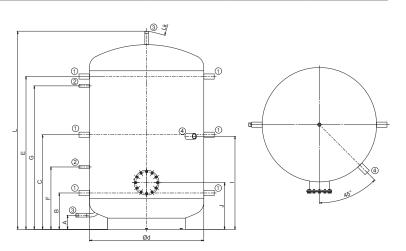
NAD 200 v1



- Geeignet als Ausgleichsbehälter zu Heizsystemen mit Kesseln für feste Brennstoffe
- Der Flansch kann mit einem Flanschheizkörper des Typs TPK 210-12 bestückt werden
- Auf Wunsch kann der Behälter mit weiteren zwei Flanschen bestückt werden
- Der Speicher kann mit einer Einschraubheizung TJ %" ausgerüstet werden

Stutzenabmessungen	NAD 500 v1	NAD 750 v1	NAD 1000 v1	NAD 1500 v1	NAD 2000 v1
Stutzen 1 – Innengewinde			1 1/4"		
Stutzen 2 – Innengewinde			1/2"		
Stutzen 3 – Außengewinde			1"		
Stutzen 4 - Innengewinde			1 ½"		




NAD 1500 v1

Technische Parameter		NAD 500 v1	NAD 750 v1	NAD 1000 v1	NAD 1500 v1	NAD 2000 v1
Bestellnummer		1213803293	1216803293	1215803293	122180393	122280393
Gesamtvolumen des Behälters	[1]	475	772	999	1507	2007
Gewicht incl. Wärmedämmung (ohne Wasser)	[kg]	96	122	141	204 (Ohne Isolation)	247 (Ohne Isolation)
Max. Betriebstemperatur / Überdruck im Behälter	[°C] / [bar]			90 / 3		
Dicke - Wärmedämmung (Neodul LB PP)	[mm]		80			120
Wärmeleitfähigkeit - Wärmedämmung (Neodul LB PP)	[W•m ⁻¹ •K ⁻¹]			0,032		
Bestellnummer - Wärmedämmung (Neodul LB PP)		Behälterbestandteil	Behälterbestandteil	Behälterbestandteil	6231710	6231711
Max. Anzahl × Leistung TPK 210-12	[ks] × [kW]			1 × 12		
Max. Anzahl × Leistung TJ %"	[ks] × [kW]	1 x 9				
Energieeffizienzklasse (Neodul LB PP)		C				
Statischer Verlust (Neodul LB PP)	[W]	83	122	135	165	185

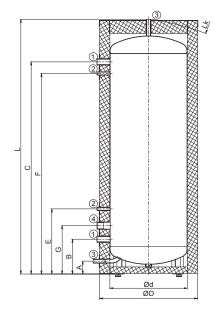
Behälterabmessungen		NAD 500 v1	NAD 750 v1	NAD 1000 v1	NAD 1500 v1	NAD 2000 v1
Behälterdurchmesser	Ød	600	750	850	1100	1100
Behälterdurchmesser mit Wärmedämmung	ØD	760	910	1010	-	-
Gesamthöhe des Behälters	L	1970	2030	2040	1906	2436
Kipphöhe	L _K	1990	2050	2060	1925	2480
Ablassstutzen	Α	100	100	100	135	135
Stutzen WQ/H-Kreise	В	270	282	297	350	350
Stutzen WQ/H-Kreise	С	958	970	985	910	1175
Stutzen WQ/H-Kreise	E	1644	1656	1671	1470	2000
Stutzen für Thermostat-Tauchhülse	F	505	517	532	600	600
Stutzen für Thermostat-Tauchhülse	G	1554	1566	1581	1380	1910
Stutzen der Heizeinheit TJ %"		937	950	965	895	1160
Flanschstutzen	J	353	366	381	450	450

NAD 500, 750, 1000 v1

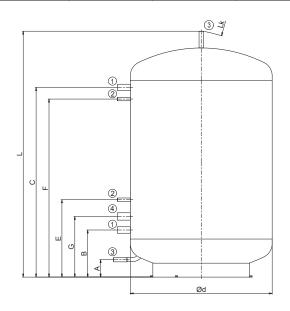
NAD 1500, 2000 v1

- Geeignet als Ausgleichsbehälter zu Heizsystemen mit Kesseln für feste Brennstoffe
- Der Speicher kann mit einer Einschraubheizung TJ ¾" ausgerüstet werden

00 v2		
UU VZ		



NAD 1500 v2


Stutzenabmessungen	NAD 500 v2	NAD 750 v2	NAD 1000 v2	NAD 1500 v2	NAD 2000 v2		
Stutzen 1 – Innengewinde			1 1/4"				
Stutzen 2 – Innengewinde		1/2"					
Stutzen 3 – Außengewinde	1"						
Stutzen 4 – Innengewinde	1 ½"						

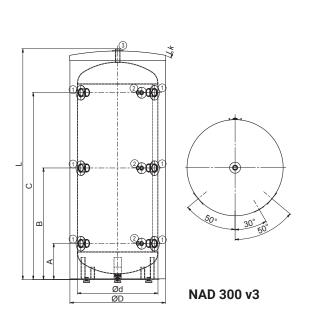
Technische Parameter		NAD 500 v2	NAD 750 v2	NAD 1000 v2	NAD 1500 v2	NAD 2000 v2
Bestellnummer		1213803294	1216803294	1215803294	122180394	122280394
Gesamtvolumen des Behälters	[1]	475	772	999	1507	2007
Gewicht incl. Wärmedämmung (ohne Wasser)	[kg]	87	114	129	192 (Ohne Isolation)	235 (Ohne Isolation)
Max. Betriebstemperatur / Überdruck im Behälter	[°C] / [bar]			90 / 3		
Dicke - Wärmedämmung (Neodul LB PP)	[mm]		80		100	120
Wärmeleitfähigkeit - Wärmedämmung	[W•m ⁻¹ •K ⁻¹]			0.032		
(Neodul LB PP)	[VV-III -K]			0,032		
Bestellnummer - Wärmedämmung (Neodul LB PP)		Behälterbestandteil	Behälterbestandteil	Behälterbestandteil	6231712	6231713
Max. Anzahl × Leistung TJ %"	[ks] × [kW]			1 × 9		
Energieeffizienzklasse (Neodul LB PP)				С		
Statischer Verlust (Neodul LB PP)	[W]	83	122	135	165	185

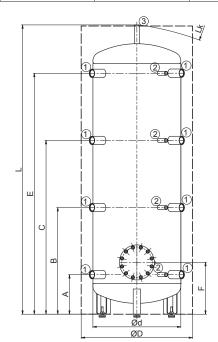
Behälterabmessungen		NAD 500 v2	NAD 750 v2	NAD 1000 v2	NAD 1500 v2	NAD 2000 v2
Behälterdurchmesser	Ød	600	750	850	1100	1100
Behälterdurchmesser mit Wärmedämmung	ØD	760	910	1010	-	-
Gesamthöhe des Behälters	L	1970	2030	2040	1906	2436
Kipphöhe	L _K	1990	2050	2060	1925	2480
Ablassstutzen	Α	100	100	100	135	135
Stutzen WQ/H-Kreise	В	270	282	297	365	365
Stutzen WQ/H-Kreise	С	1644	1656	1671	1470	2000
Hrdlo jímek pro čidlo	Е	505	517	532	600	600
Hrdlo jímek pro čidlo	F	1554	1566	1581	1380	1910
Stutzen der Heizeinheit TJ %"	G	375	386	402	470	470

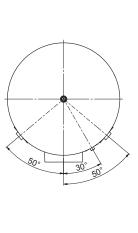
NAD 500, 750, 1000 v2

NAD 1500, 2000 v2

- Typen: 300, 500, 750, 1000 l
- Der Tank wird inklusive Wärmedämmung geliefert, der Tank NAD 300 v3 wird mit nicht entfernbarer Wärmedämmung geliefert
- Geeignet als Ausgleichsbehälter zu Heizsystemen mit Kesseln für feste Brennstoffe
- Der Flansch kann mit der Heizeinheit TPK 210-12 bestückt werden
- Der Speicher kann mit einer Einschraubheizung TJ %" ausgerüstet werden


ľ	1			
ĺ				

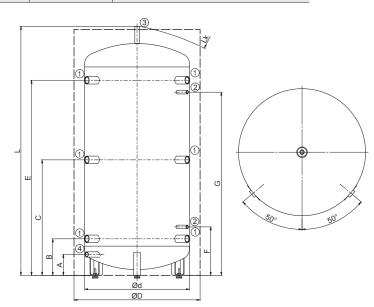



Stutzenabmessungen	NAD 300 v3	NAD 500 v3	NAD 750 v3	NAD 1000 v3		
Stutzen 1 – Innengewinde	1 ½"					
Stutzen 2 – Innengewinde	1/2"					
Stutzen 3 – Außengewinde		1	"			

Technische Parameter		NAD 300 v3	NAD 500 v3	NAD 750 v3	NAD 1000 v3	
Bestellnummer		121080301	1213803287	1216803287	1215803287	
Gesamtvolumen des Behälters	[1]	320	475	772	999	
Gewicht incl. Wärmedämmung (ohne Wasser)	[kg]	70	98	123	141	
Max. Betriebstemperatur / Überdruck im Behälter	[°C] / [bar]	90 / 3				
Dicke - Wärmedämmung (Neodul LB PP)	[mm]	PUR 50 80				
Wärmeleitfähigkeit - Wärmedämmung (Neodul LB PP)	[W•m ⁻¹ •K ⁻¹]		0,0	32		
Max. Anzahl × Leistung TPK 210-12	[ks] × [kW]	_		1 × 12		
Max. Anzahl × Leistung TJ ¾"	[ks] × [kW]	1 × 3,3+3×9	2x 3,3+4x9	2× 3,75+4×9	2×6+4×9	
Energieeffizienzklasse (Neodul LB PP)			(2		
Statischer Verlust (Neodul LB PP)	[W]	80	83	122	135	

Behälterabmessungen		NAD 300 v3	NAD 500 v3	NAD 750 v3	NAD 1000 v3
Behälterdurchmesser	Ød	550	600	750	850
Behälterdurchmesser mit Wärmedämmung	ØD	650	760	910	1010
Gesamthöhe des Behälters	L	1575	1970	2030	2040
Kipphöhe	L _K	1660	1990	2050	2060
Stutzen WQ/H-Kreise und Thermostat-Tauchhülse	А	245	270	282	297
Stutzen WQ/H-Kreise und Thermostat-Tauchhülse	В	760	728	739	755
Stutzen WQ/H-Kreise und Thermostat-Tauchhülse	С	1275	1186	1197	1213
Stutzen WQ/H-Kreise und Thermostat-Tauchhülse	E	-	1644	1656	1671
Flanschstutzen	F	-	353	366	381

NAD 500, 750, 1000 v3



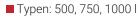
- Typen: 800 l
- Der Tank wird inklusive Wärmedämmung geliefert
- Geeignet als Ausgleichsbehälter zu Heizsystemen mit Kesseln für feste Brennstoffe
- Der Speicher kann mit einer Einschraubheizung TJ ¾" ausgerüstet werden
- Der Behälter ist so dimensioniert, dass er durch Türöffnungen von 80cm passt

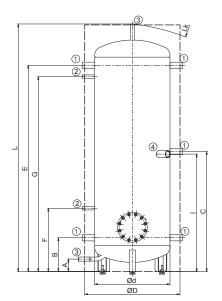
Stutzenabmessungen	NADS 800 v3
Stutzen 1 - Innengewinde	1 ½"
Stutzen 2 – Innengewinde	1/2"
Stutzen 3 - Außengewinde	1"
Stutzen 4 - Innengewinde	1"

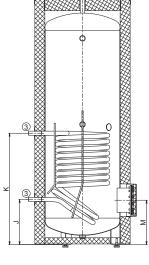
Technische Parameter		NADS 800 v3
Bestellnummer		1218803287
Gesamtvolumen des Behälters	[1]	775
Gewicht incl. Wärmedämmung (ohne Wasser)	[kg]	114
Max. Betriebstemperatur / Überdruck im Behälter	[°C] / [bar]	90 / 3
Dicke - Wärmedämmung (Neodul LB PP)	[mm]	80
Wärmeleitfähigkeit - Wärmedämmung (Neodul LB PP)	[W•m ⁻¹ •K ⁻¹]	0,032
Max. Anzahl × Leistung TJ %"	[ks] × [kW]	1 × 3,75+3×9
Energieeffizienzklasse (Neodul LB PP)		С
Statischer Verlust (Neodul LB PP)	[W]	116

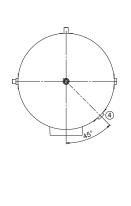
Behälterabmessungen		NADS 800 v3
Behälterdurchmesser	Ød	790
Behälterdurchmesser mit Wärmedämmung	Ø D	950
Gesamthöhe des Behälters	L	1880
Kipphöhe	Lĸ	1900
Ablassstutzen	A	157
Stutzen WQ/H-Kreise	В	275
Stutzen WQ/H-Kreise	С	870
Stutzen WQ/H-Kreise	E	1470
Thermostat-Tauchhülse	F	365
Thermostat-Tauchhülse	G	1380

NADS 800 v3






- Geeignet als Ausgleichsbehälter zu Heizsystemen mit Kesseln für feste Brennstoffe und zu Solarsystemen
- Der Speicher kann mit einer Einschraubheizung TJ ¾" ausgerüstet werden
- Der Flansch kann mit der Heizeinheit TPK 210-12 bestückt werden


Stutzenabmessungen	NAD 500 v4	NAD 750 v4	NAD 1000 v4			
Stutzen 1 – Innengewinde	1 ¼"					
Stutzen 2 – Innengewinde	1/2"					
Stutzen 3 – Außengewinde	1"					
Stutzen 4 – Innengewinde		1 ½"				

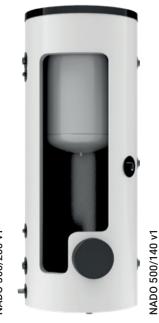
Technische Parameter		NAD 500 v4	NAD 750 v4	NAD 1000 v4	
Bestellnummer		1213803295	1216803295	1215803295	
Gesamtvolumen des Behälters	[1]	475	772	999	
Gewicht incl. Wärmedämmung (ohne Wasser)	[kg]	121	148	164	
Max. Betriebstemperatur / Überdruck im Behälter	[°C] / [bar]	90 / 3			
Wärmeübertragungsfläche des Wärmetauschers	[m ²]	1,4			
Volumen des Wärmetauschers	[1]	10,5			
Max. Betriebstemp. / Überdruck imWärmetauscher	[°C] / [bar]		110 / 10		
Dicke - Wärmedämmung (Neodul LB PP)	[mm]		80		
Wärmeleitfähigkeit - Wärmedämmung (Neodul LB PP)	[W•m ⁻¹ •K ⁻¹]		0,032		
Max. Anzahl × Leistung TPK 210-12	[ks] x [kW]	1 × 6 1 × 12			
Max. Anzahl × Leistung TJ %"	[ks] × [kW]	1 × 9			
Energieeffizienzklasse (Neodul LB PP)		С			
Statischer Verlust (Neodul LB PP)	[W]	80	119	133	

Behälterabmessungen		NAD 500 v4	NAD 750 v4	NAD 1000 v4
Behälterdurchmesser	Ød	600	750	850
Behälterdurchmesser mit Wärmedämmung	ØD	760	910	1010
Gesamthöhe des Behälters	L	1970	2030	2040
Kipphöhe	Lĸ	1990	2050	2060
Ablassstutzen	А	100	100	100
Stutzen WQ/H-Kreise	В	270	282	297
Stutzen WQ/H-Kreise	С	958	970	985
Stutzen WQ/H-Kreise	Е	1644	1656	1671
Stutzen für Thermostat-Tauchhülse	F	505	517	532
Stutzen für Thermostat-Tauchhülse	G	1554	1566	1581
Stutzen der Heizeinheit TJ %"		937	950	965
Stutzen - Wärmetauscher	J	360	344	387
Stutzen - Wärmetauscher	K	888	872	915
Flanschstutzen	М	353	366	381

NAD 500 v4

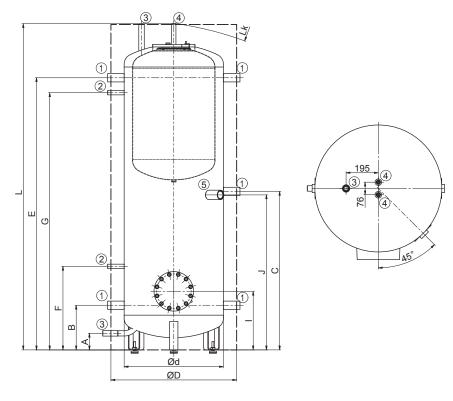
PUFFERSPEICHER

MIT BRAUCHWASSERBEREITUNG

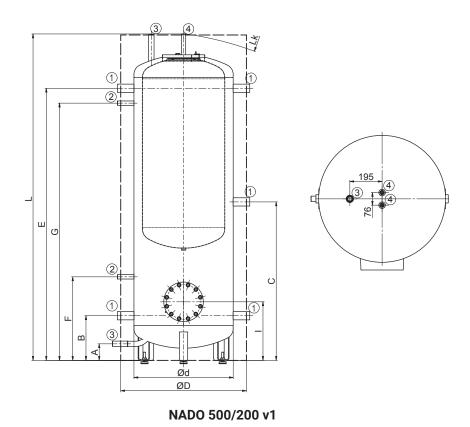


- Typen: 500, 750, 1000 I
- Innenbehälter für Warmwasser, Volumen 140 und 200 l

- Geeignet als Speicherbehälter zu Heizsystemen mit Kesseln für feste Brennstoffe
- Der Flansch kann mit der Heizeinheit TPK 210-12 bestückt werden
- Für die Varianten /140 kann der Speicher mit einer Einschraubheizung TJ %" ausgerüstet werden



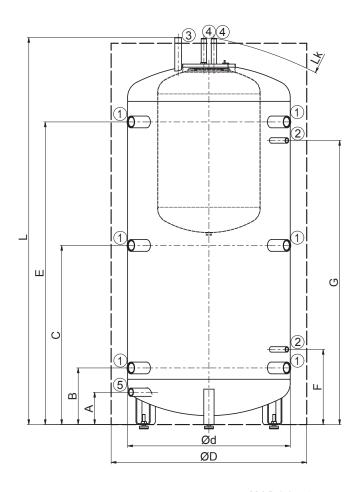
Stutzenabmessungen	NADO 500 v1	NADO 750 v1	NADO 1000 v1				
Stutzen 1 – Innengewinde	1 ¼"						
Stutzen 2 – Innengewinde	1/2"						
Stutzen 3 – Außengewinde	1"						
Stutzen 4 - Außengewinde		3/4"					
Stutzen 5 - Innengewinde		1 ½"					

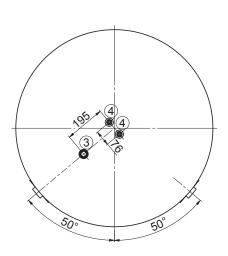

Technische Parameter		NADO 500/140 v1	NADO 750/140 v1	NADO 1000/140 v1	NADO 500/200 v1	NADO 750/200 v1	NADO 1000/200 v1
Bestellnummer		1213803215	1216803215	1215803215	1213803297	1216803297	1215803297
Gesamtvolumen des Behälters	[1]	475	772	999	475	772	999
Volumen das Warmwasserspeicherbehälters	[1]		140			210	
Gewicht incl. Wärmedämmung (ohne Wasser)	[kg]	124	150	167	138	164	181
Max. Betriebstemperatur / Überdruck im Behälter	[°C] / [bar] 90 / 3						
Max. Betriebstemperatur / Überdruck im Warmwasserbehälter	[°C] / [bar]	C] / [bar] 90 / 6					
Wärmeübertragungsfläche Warmwasserbehälter	[m²]		1,43			1,95	
Ergiebigkeitdes Warmwassers von 40°Cbei einer Speicherbehältertemp.	[l] / [l•min ⁻¹]	260/5	490/5	750/5	260/10	490/10	750/ 10
von 53 °C und Eintrittswassertemp. 15 °C / Warmwasserdurchfluss*	[1] / [1-111111]	200/3	490/3	7 307 3	200/ 10	490/10	730/10
Ergiebigkeitdes Warmwassers von 40°Cbei einer Speicherbehältertemp.	[l] / [l•min ⁻¹]	650/5	1170/5	1450/5	650/10	1170/10	1450/10
von 80 °C und Eintrittswassertemp. 15 °C / Warmwasserdurchfluss*	[1] / [1 111111]	000/0	1170/0			1170/10	1430/ 10
Dicke - Wärmedämmung (Neodul LB PP)	[mm]			8	0		
Wärmeleitfähigkeit - Wärmedämmung (Neodul LB PP)	[W•m ⁻¹ •K ⁻¹]			0,0	32		
Max. Anzahl × Leistung TPK 210-12	[ks] × [kW]			1 ×	12		
Max. Anzahl × Leistung TJ ¾"	[ks] × [kW]	1 x 9 -					
Energieeffizienzklasse (Neodul LB PP)		B C B C					
Statischer Verlust (Neodul LB PP)	[W]	80	117	130	80	117	130

Behälterabmessungen		NADO 500/140 v1	NADO 750/140 v1	NADO 1000/140 v1	NADO 500/200 v1	NADO 750/200 v1	NADO 1000/200 v1
Behälterdurchmesser	Ød	600	750	850	600	750	850
Behälterdurchmesser mit Wärmedämmung	Ø D	760	910	1010	760	910	1010
Gesamthöhe des Behälters	L	1970	2030	2040	1970	2030	2040
Kipphöhe	L _K	1990	2050	2060	1990	2050	2060
Ablassstutzen	А	100	100	100	100	100	100
Stutzen WQ/H-Kreise	В	270	282	297	270	282	297
Stutzen WQ/H-Kreise	С	958	970	985	958	970	985
Stutzen WQ/H-Kreise	Е	1644	1656	1671	1644	1656	1671
Stutzen für Thermostat-Tauchhülse	F	505	517	532	505	517	532
Stutzen für Thermostat-Tauchhülse	G	1554	1566	1581	1554	1566	1581
Flanschstutzen		353	366	381	353	366	381
Stutzen der Heizeinheit TJ %"	J	937	950	965	-	_	_

NADO 500/140 v1

- ■Typen: 800 l
- Innenbehälter für Warmwasser, Volumen 140 I
- Der Tank wird inklusive Wärmedämmung geliefert
- Geeignet als Ausgleichsbehälter zu Heizsystemen mit Kesseln für feste Brennstoffe
- Der Speicher kann mit einer Einschraubheizung TJ ¾" ausgerüstet werden
- Der Behälter ist so dimensioniert, dass er durch Türöffnungen von 80cm passt


Stutzenabmessungen	NADOS 800/140 v1
Stutzen 1 – Innengewinde	1 ½"
Stutzen 2 – Innengewinde	1/2"
Stutzen 3 - Außengewinde	1"
Stutzen 4 - Außengewinde	3/4"
Stutzen 5 - Innengewinde	1"



$\overline{}$
á
40
Ξ
õ
80
"
ĕ
Ą

Technische Parameter		NADOS 800/140 v1
Bestellnummer		1218803215
Gesamtvolumen des Behälters	[1]	775
Volumen das Warmwasserspeicherbehälters	[1]	140
Gewicht incl. Wärmedämmung (ohne Wasser)	[kg]	142
Max. Betriebstemperatur / Überdruck im Behälter	[°C] / [bar]	90 / 3
Max. Betriebstemperatur / Überdruck im Warmwasserbehälter	[°C] / [bar]	90 / 6
Wärmeübertragungsfläche Warmwasserbehälter	[m ²]	1,43
Volumendurchfluss des Warmwasserbehälters	[m³•h ⁻¹]	0,3
Ergiebigkeitdes Warmwassers von 40°Cbei einer Speicherbehältertemp. von 53 °C und Eintrittswassertemp. 15 °C / Warmwasserdurchfluss*	[l] / [l•min ⁻¹]	495/5
Ergiebigkeitdes Warmwassers von 40°Cbei einer Speicherbehältertemp. von 80°C und Eintrittswassertemp. 15°C / Warmwasserdurchfluss*	[I] / [I•min ⁻¹]	1175 / 5
Dicke - Wärmedämmung (Neodul LB PP)	[mm]	80
Wärmeleitfähigkeit - Wärmedämmung (Neodul LB PP)	[W•m ⁻¹ •K ⁻¹]	0,032
Max. Anzahl × Leistung TJ %"	[ks] x [kW]	1 × 3,75+2×9
Energieeffizienzklasse (Neodul LB PP)		С
Statischer Verlust (Neodul LB PP)	[W]	116

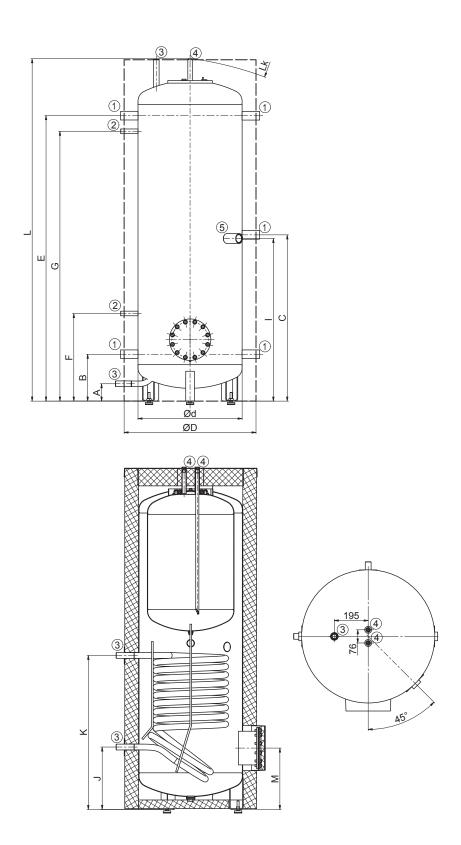
Behälterabmessungen		NADOS 800/140 v1
Behälterdurchmesser	Ød	790
Behälterdurchmesser mit Wärmedämmung	ØD	950
Gesamthöhe des Behälters	L	1880
Kipphöhe	L _K	1900
Ablassstutzen	A	157
Stutzen WQ/H-Kreise	В	275
Stutzen WQ/H-Kreise	С	870
Stutzen WQ/H-Kreise	E	1470
Thermostat-Tauchhülse	F	365
Thermostat-Tauchhülse	G	1380

NADOS v1

- Typen: 500, 750, 1000 I
- Innenbehälter für Warmwasser, Volumen 140 I

- Geeignet als Speicherbehälter zu Heizsystemen mit Kesseln für feste Brennstoffe und zu Solarsystemen
- Der Flansch kann mit der Heizeinheit TPK 210-12 bestückt werden
- Behälter mit Innenspeicher von 140-Liter-Volumen können mit einer Einschraubheizung TJ %" ausgerüstet werden

Stutzenabmessungen	NADO 500/140 v2	NADO 750/140 v2	NADO 1000/140 v2
Stutzen 1 – Innengewinde		1 1/4"	
Stutzen 2 – Innengewinde		1/2"	
Stutzen 3 – Außengewinde		1"	
Stutzen 4 - Außengewinde		3/4"	
Stutzen 5 - Innengewinde		1 %"	



NADO 500/140 v2

Technische Parameter		NADO 500/140 v2	NADO 750/140 v2	NADO 1000/140 v2
Bestellnummer		1213803291	1216803291	1215803291
Gesamtvolumen des Behälters	[1]	475	772	999
Volumen das Warmwasserspeicherbehälters	[1]		140	
Gewicht incl. Wärmedämmung (ohne Wasser)	[kg]	154	181	195
Max. Betriebstemperatur / Überdruck im Behälter	[°C] / [bar]		90/3	
Max. Betriebstemperatur / Überdruck im Warmwasserbehälter	[°C] / [bar]		90 / 6	
Wärmeübertragungsfläche Warmwasserbehälter	[m ²]		1,43	
Max. Betriebstemp. / Überdruck imWärmetauscher	[°C] / [bar]		110 / 10	
Wärmeübertragungsfläche des Wärmetauschers	[m ²]	1,4		
Volumendurchfluss des Warmwasserbehälters	[m³•h ⁻¹]	0,3		
Volumen des Wärmetauschers	[1]	10,5		
Ergiebigkeitdes Warmwassers von 40°Cbei einer Speicherbehältertemp.	[l] / [l•min ⁻¹]	260/5	490/5	750/5
von 53 °C und Eintrittswassertemp. 15 °C / Warmwasserdurchfluss*	[1] / [1*111111]	200/3	490/3	73073
Ergiebigkeitdes Warmwassers von 40°Cbei einer Speicherbehältertemp.	[l] / [l•min ⁻¹]	650/5	1170/5	1450/5
von 80 °C und Eintrittswassertemp. 15 °C / Warmwasserdurchfluss*		030/3		1400/0
Dicke - Wärmedämmung (Neodul LB PP)	[mm]	80		
Wärmeleitfähigkeit - Wärmedämmung (Neodul LB PP)	[W•m ⁻¹ •K ⁻¹]	0,032		
Max. Anzahl × Leistung TPK 210-12	[ks] × [kW]	1 x 6 1 x 12		12
Max. Anzahl × Leistung TJ %"	[ks] × [kW]		1 x 9	
Energieeffizienzklasse (Neodul LB PP)		В		<u> </u>
Statischer Verlust (Neodul LB PP)	[W]	79	116	128

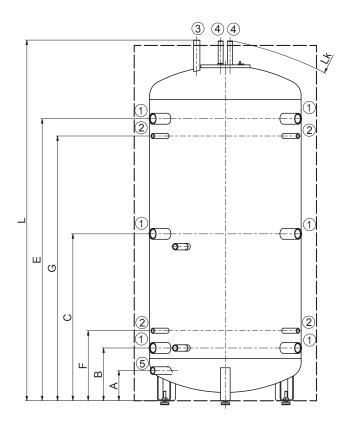
Behälterabmessungen		NADO 500/140 v2	NADO 750/140 v2	NADO 1000/140 v2
Behälterdurchmesser	Ød	600	750	850
Behälterdurchmesser mit Wärmedämmung	ØD	760	910	1010
Gesamthöhe des Behälters	L	1970	2030	2040
Kipphöhe	L _K	1990	2050	2060
Ablassstutzen	A	100	100	100
Stutzen WQ/H-Kreise	В	270	282	297
Stutzen WQ/H-Kreise	С	958	970	985
Stutzen WQ/H-Kreise	E	1644	1656	1671
Stutzen für Thermostat-Tauchhülse	F	505	517	532
Stutzen für Thermostat-Tauchhülse	G	1554	1566	1581
Stutzen der Heizeinheit TJ %"		937	950	965
Stutzen - Wärmetauscher	J	360	344	387
Stutzen - Wärmetauscher	K	888	872	915
Flanschstutzen	M	353	366	381

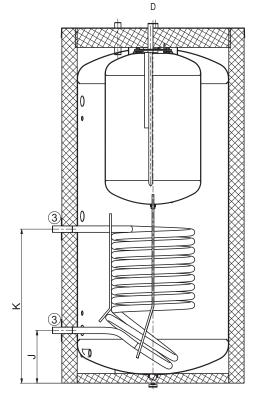
NADO 500/140 v2

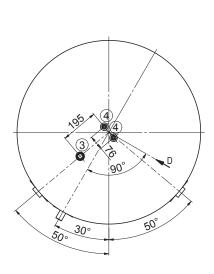
- ■Typen: 800 l
- Innenbehälter für Warmwasser, Volumen 140 I

- Geeignet als Ausgleichsbehälter zu Heizsystemen mit Kesseln für feste Brennstoffe
- Der Speicher kann mit einer Einschraubheizung TJ ¾" ausgerüstet werden
- Der Behälter ist so dimensioniert, dass er durch Türöffnungen von 80cm passt

Stutzenabmessungen	NADOS 800/140 v2
Stutzen 1 – Innengewinde	1 ½"
Stutzen 2 – Innengewinde	1/2"
Stutzen 3 – Außengewinde	1"
Stutzen 4 – Außengewinde	3/4"
Stutzen 5 - Innengewinde	1"




72
40
Ţ
800
ω
S
Ö
무
⇒


Technische Parameter		NADOS 800/140 v2
Bestellnummer		1218803291
Gesamtvolumen des Behälters	[1]	775
Volumen das Warmwasserspeicherbehälters	[1]	140
Gewicht incl. Wärmedämmung (ohne Wasser)	[kg]	169
Max. Betriebstemperatur / Überdruck im Behälter	[°C] / [bar]	90 / 3
Max. Betriebstemperatur / Überdruck im Warmwasserbehälter	[°C] / [bar]	90 / 6
Wärmeübertragungsfläche Warmwasserbehälter	[m ²]	1,43
Max. Betriebstemp. / Überdruck imWärmetauscher	[°C] / [bar]	110 / 10
Wärmeübertragungsfläche des Wärmetauschers	[m²]	1,5
Volumendurchfluss des Warmwasserbehälters	[m³•h ⁻¹]	0,3
Volumen des Wärmetauschers	[1]	10,5
Ergiebigkeitdes Warmwassers von 40°Cbei einer Speicherbehältertemp. von 53 °C und Eintrittswassertemp. 15 °C / Warmwasserdurchfluss*	[l] / [l•min ⁻¹]	495/5
Ergiebigkeitdes Warmwassers von 40°Cbei einer Speicherbehältertemp. von 80°C und Eintrittswassertemp. 15°C / Warmwasserdurchfluss*	[l] / [l•min ⁻¹]	1175 / 5
Dicke - Wärmedämmung (Neodul LB PP)	[mm]	80
Wärmeleitfähigkeit - Wärmedämmung (Neodul LB PP)	[W•m ⁻¹ •K ⁻¹]	0,032
Max. Anzahl × Leistung TJ %"	[ks] × [kW]	1 × 3,75+1×9
Energieeffizienzklasse (Neodul LB PP)		С
Statischer Verlust (Neodul LB PP)	[W]	116

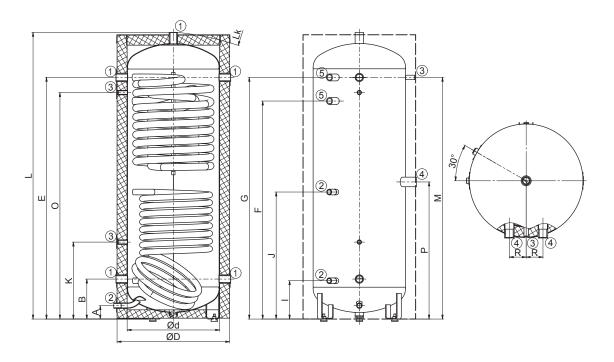
Behälterabmessungen		NADOS 800/140 v2
Behälterdurchmesser	Ød	790
Behälterdurchmesser mit Wärmedämmung	ØD	950
Gesamthöhe des Behälters	L	1880
Kipphöhe	L _K	1900
Ablassstutzen	A	157
Stutzen WQ/H-Kreise	В	275
Stutzen WQ/H-Kreise	C	870
Stutzen WQ/H-Kreise	E	1470
Thermostat-Tauchhülse	F	365
Thermostat-Tauchhülse	G	1380
Stutzen - Wärmetauscher	J	275
Stutzen - Wärmetauscher	K	803

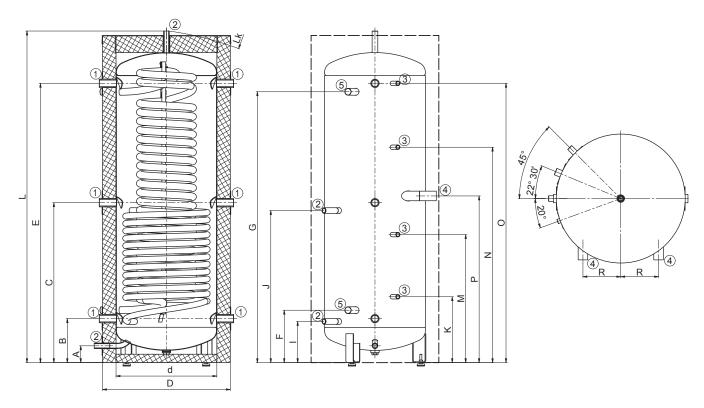
NADOS 800/140 v2

- Typen: 300, 500, 750, 1000 l
- Warmwasser-Durchlauferhitzung im Edelstahl-Wärmetauscher mit einer überdurchschnittlichen Wärmeübertragungsfläche

- Man kann unterschiedliche Wärmequellen anschließen Biomasse-, Kohle-, Gas- und Stromkessel, Wärmepumpen und Solarkollektoren
- Der Speicher (Stutzen Nr.4) kann mit einer Einschraubheizung TJ %" ausgerüstet werden

Stutzenabmessungen	NADO 300/20 v6	NADO 500/25 v6	NADO 750/35 v6	NADO 1000/45 v6
Stutzen 1 - Innengewinde	1 ¼"			
Stutzen 2 - Außengewinde	1"			
Stutzen 3 - Innengewinde	1/2"			
Stutzen 4 - Innengewinde	1 ½"			
Stutzen 5 - Außengewinde	1 ¼"			




NADO 500, 750,1000 v6

Technische Parameter		NADO 300/20 v6	NADO 500/25 v6	NADO 750/35 v6	NADO 1000/45 v6	
Bestellnummer		1210803298	1213803250	1216803250	1215803250	
Gesamtvolumen des Behälters	[1]	358	475	772	999	
Volumen des Warmwasserspeicherbehälters	[1]	20	23	32	37	
Gewicht incl. Wärmedämmung (ohne Wasser)	[kg]	106	145	178	212	
Max. Betriebstemperatur / Überdruck im Behälter	[°C] / [bar]		90	/ 3		
Max. Betriebstemp. / Überdruck imWärmetauscher TV	[°C] / [bar]		90	/ 6		
Max. Betriebstemperatur / Überdruck im Heizwärmetauscher	[°C] / [bar]		110	/ 10		
Wärmeübertragungsfläche des Wärmetauschers TV	[m ²]	4,5	6,25	8,5	10	
Volumendurchfluss des Warmwasser-Warmwasserbehälters	[m³•h ⁻¹]		0	,6		
Wärmeübertragungsfläche des Heizwärmetauschers (oben / unten)	[m ²]	- / 1,6	- / 2,2	- / 2,2	- / 3,3	
Volumen Heizwärmetauscher (oben / unten)	[1]	-/ 12	-/ 18	-/ 18	-/ 25	
Ergiebigkeitdes Warmwassers von 40°Cbei einer Speicherbehältertemp.	[l] / [l•min ⁻¹]	210/ 10	260/10	490/10	750/10	
von 53 °C und Eintrittswassertemp. 15 °C / Warmwasserdurchfluss*	[1] / [1]	210/ 10	2007 10	150, 10	7 007 10	
Ergiebigkeitdes Warmwassers von 40°Cbei einer Speicherbehältertemp.	[l] / [l•min ⁻¹]	520/10	650/10	1170/10	1450/10	
von 80 °C und Eintrittswassertemp. 15 °C / Warmwasserdurchfluss*		, -	000, 10	- ' '	1 100/ 10	
Dicke - Wärmedämmung (Neodul LB PP)	[mm]	60		80		
Wärmeleitfähigkeit - Wärmedämmung (Neodul LB PP)	[W•m ⁻¹ •K ⁻¹]		0,0	132		
Max. Anzahl × Leistung TJ %" mit verlängertem Kühlelement	[ks] × [kW]	2 × 4,5 2 × 6				
Energieeffizienzklasse (Neodul LB PP)			(<u> </u>		
Statischer Verlust (Neodul LB PP)	[W]	97	91	114	148	

Behälterabmessungen		NADO 300/20 v6	NADO 500/25 v6	NADO 750/35 v6	NADO 1000/45 v6
Behälterdurchmesser	Ød	550	600	750	850
Behälterdurchmesser mit Wärmedämmung	Ø D	670	760	910	1010
Gesamthöhe des Behälters	L	1705	1970	2030	2040
Kipphöhe	L _K	1715	1990	2050	2060
Ablassstutzen	A	80	100	100	100
Stutzen WQ/H-Kreise	В	238	262	280	297
Stutzen WQ/H-Kreise	С	-	952	1018	1040
Stutzen WQ/H-Kreise	Е	1438	1662	1680	1700
Warmwasserstutzen - Eintritt	F	1299	312	320	380
Warmwasserstutzen - Austritt	G	1438	1612	1680	1700
Solarwärmetauscher-Stutzen - Austritt		228	245	270	280
Solarwärmetauscher-Stutzen - Eintritt	J	756	905	884	980
Stutzen für Thermostat-Tauchhülse	K	458	392	415	463
Stutzen für Thermostat-Tauchhülse	М	1438	762	742	755
Stutzen für Thermostat-Tauchhülse	N	-	1282	1219	1213
Stutzen für Thermostat-Tauchhülse	0	1348	1662	1680	1700
Stutzen der Heizeinheit TJ %"	Р	816	992	1017	1040
Stutzen der Heizeinheit TJ %"	R	100	225	290	340

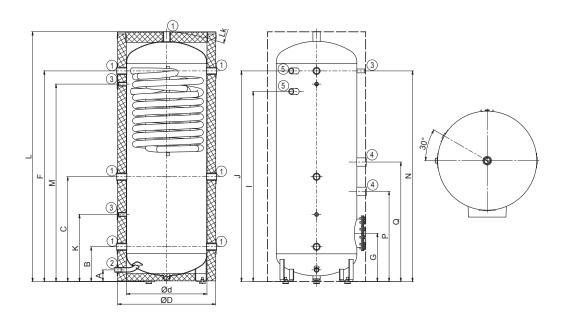
NADO 300/20 v6

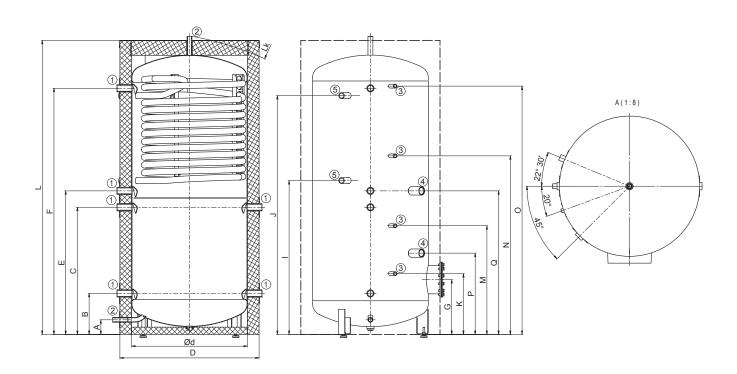
NADO 500, 750,1000 v6

- Typen: 300, 400, 750, 1000 l
- Warmwasser-Durchlauferhitzung im Edelstahl-Wärmetauscher mit einer überdurchschnittlichen Wärmeübertragungsfläche

- Man kann unterschiedliche Wärmequellen anschließen Besonders geeignet für Wärmepumpen mit Photovoltaik
- Der Speicher (Stutzen Nr. 4) kann mit einer Einschraubheizung TJ 6/4" ausgerüstet werden
- Der Flansch kann mit der Heizeinheit TPK 210-12 bestückt werden

Stutzenabmessungen	NADO 300/20 v11	NADO 400/20 v11	NADO 750/25 v11	NADO 1000/25 v11		
Stutzen 1 – Innengewinde		1	1/4"			
Stutzen 2 – Außengewinde		1	"			
Stutzen 3 - Innengewinde		1/	2			
Stutzen 4 - Innengewinde	1 ½"					
Stutzen 5 - Außengewinde		1	1/4"			




NADO 750, 1000 v11

Technische Parameter		NADO 300/20 v11	NADO 400/20 v11	NADO 750/25 v11	NADO 1000/25 v11	
Bestellnummer		1210803360	1214803360	1218803247	1215803347	
Gesamtvolumen des Behälters	[1]	320	405	772	999	
Volumen das Warmwasserspeicherbehälters	[1]	2	.0	2	3	
Gewicht incl. Wärmedämmung (ohne Wasser)	[kg]	106	122	178	212	
Max. Betriebstemperatur / Überdruck im Behälter	[°C] / [bar]		90	/ 3		
Max. Betriebstemp. / Überdruck im Wärmetauscher	[°C] / [bar]		90	/ 6		
Wärmeübertragungsfläche des Wärmetauschers TV	[m ²]	4	,5	6,	25	
Volumendurchfluss des Warmwasser-Warmwasserbehälters	[m³•h ⁻¹]		0	,6		
Ergiebigkeitdes Warmwassers von 40°Cbei einer Speicherbehältertemp.	[l] / [l•min ⁻¹]	210 / 10*	220 / 10*	240 / 10*	260 / 10*	
voir 55 °C und Eintrittswassertemp. 15 °C / Warmwasserdurchildss."	[1] / [1 111111]	210 / 10	220 / 10	240 / 10	200 / 10	
Ergiebigkeitdes Warmwassers von 40°Cbei einer Speicherbehältertemp.	[l] / [l•min ⁻¹]	520 / 10*	540 / 10*	610 / 10*	650 / 10	
von 80 °C und Eintrittswassertemp. 15 °C / Warmwasserdurchfluss*	[1] / [1 111111]		V	****	,	
Dicke - Wärmedämmung (Neodul LB PP)	[mm]	6	0	8	0	
Wärmeleitfähigkeit - Wärmedämmung (Neodul LB PP)	[W•m ⁻¹ •K ⁻¹]		0,0)32		
Max. Anzahl × Leistung TPK 210-12	[ks] × [kW]	1 × 6 1 × 12				
Max. Anzahl × Leistung TJ %" s prodl. chladnou částí	[ks] × [kW]	2 × 6 2 × 9			× 9	
Energieeffizienzklasse (Neodul LB PP)		C				
Statischer Verlust (Neodul LB PP)	[W]	97	113	114	148	

	_				
Behälterabmessungen		NADO 300/20 v11	NADO 400/20 v11	NADO 750/25 v11	NADO 1000/25 v11
Behälterdurchmesser	Ød	550	550	790	850
Behälterdurchmesser mit Wärmedämmung	ØD	670	670	950	1010
Gesamthöhe des Behälters	L	1702	1902	2035	2061
Kipphöhe	Lĸ	1715	1915	2073	2104
Ablassstutzen	Α	90	90	100	100
Stutzen WQ/H-Kreise	В	248	248	280	297
Stutzen WQ/H-Kreise	С	726	818	868	885
Stutzen WQ/H-Kreise	Е	-	-	980	997
Stutzen WQ/H-Kreise	F	1448	1648	1680	1697
Flanschstutzen	G	340	340	374	391
Warmwasserstutzen - Eintritt	1	1308	1508	1050	1067
Warmwasserstutzen - Austritt	J	1448	1648	1630	1647
Stutzen für Thermostat-Tauchhülse	K	468	468	415	432
Stutzen für Thermostat-Tauchhülse	M	1358	1558	742	759
Stutzen für Thermostat-Tauchhülse	N	1448	1648	1219	1236
Stutzen für Thermostat-Tauchhülse	0	-	-	1695	1712
Stutzen der Heizeinheit TJ %"	Р	626	718	555	572
Stutzen der Heizeinheit TJ %"	Q	826	918	980	997

NADO 300, 400/20 v11

NADO 750, 1000/25 v11

- Lieferung in Variante NEODUL
- Standarddicke der Wärmedämmung Neodul 80 mm
- Serienmäßige Wärmeisolierung in den Energieklassen B und C
- Beispiel für Wärmeverlust beim 500-Liter-Behälter: 1,9 kWh / 24 h bei Wärmedämmung Dicke von 80 mm
- Im Packungsinhalt inbegriffen sind die unteren und oberen Abdeckungen, sowie die Kappen der Flansche und Öffnungen
- Behälter NAD 50, 100, 250 v1 und UKV 300, 500 werden mit Polyurethan-Wärmedämmung geliefert
- Die Vliesteile der Wärmedämmung bestehen zu 65 % aus recyceltem Material aus PET-Flaschen

Querschnitte der Wärmedämmung mit diversem Verschluß NEODUL

IPS ProtectX

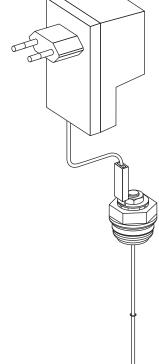
IPS - IONISATIONS-POLARISATIONSSYSTEM

Vorrichtung zur physikalischen Wasseraufbereitung und zur Wassersteinreduktion zum Schutz von Haushaltsgeräten und der Wasserverteilung

VORTEILE

- Die Nutzungsdauer der Heiz- und Sanitäranlagen wird dadurch verlängert
- Keine externe Energiequelle
- ■Wartungsfrei
- Absolut keine Zusatzkosten
- Keine Nutzung von Chemiestoffen
- Druckverlust überschaubar
- Patentiertes Produkt
- Zertifizierte Wirksamkeit
- Blue line geeignet für alle Wasserversorgungstypen, enthaltend zusätzlich Desinfektionselemente, die z.B. für nicht aufbereitete Wasserquellen nötig sind
- Red line geeignet für alle Wasserversorgungstypen

SCHAUBILD DER ANORDNUNG DER IPS PROTECTX ANLAGE RED LINE


- 1. Wasserzähler
- 2. Absperrventil
- 3. Filter für mechanische Verschmutzung
- 4. IPS ProtectX

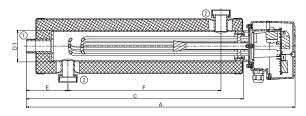
Bestellnummer	ТҮРЕ	ABMESSUNG (d × I)	HÖCHSTDURCHFLUSS
100671000	ProtectX G 1/2" (red line)	50 × 245 mm	1 m³/h
100671001	ProtectX G 34" (red line)	50 × 245 mm	3,2 m³/h
100671002	ProtectX G 1" (red line)	50 × 251 mm	4 m³/h
100671003	ProtectX G ½" (blue line)	50 × 245 mm	1 m³/h
100671004	ProtectX G ¾" (blue line)	50 × 245 mm	3,2 m³/h
100671005	ProtectX G 1" (blue line)	50 × 251 mm	4 m³/h

- Garantiezeit 24 Monate
- Zuverlässigkeit und hohe Qualität
- Funktions- und Sicherheitsgarantie
- Garantierte lange Nutzungsdauer
- Gleiche Komponenten, die auch bei der Herstellung verwendet werden

FREMDSTROMANODE

- Dient dem Schutz der inneren emaillierten Speicherbehälter und verlängert die Lebensdauer
- Verwendbar bis 300-Liter-Volumen
- Wartungsfrei, unterliegt keiner Abnutzung
- Auf Bestellung

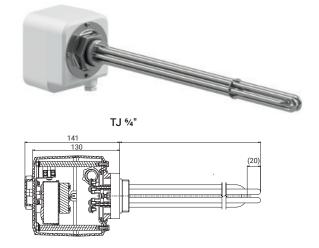
Bestellnummer	6199209
Durchmesser	2 mm
Länge	200 mm
Länge der Beschichtung	100 mm

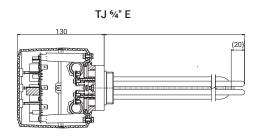


BIVALENTE HEIZQUELLE TJ 2"

Туре		TJ 2" EHP 9 kW
Bestellnummer		2110551
Leistung	[kW]	3 - 9
Einbaulänge (± 10 mm)	[mm]	520
Gewicht	[kg]	5,5
Elektrischer Anschluss		3/N/PE ~ 3× 230 V / 50 Hz, ↓
Empfohlener Schutzsicherung	[A]	3 × 16
Flektrische Schutzart		IP44

ELEKTRISCHER EINSCHRAUBHEIZKÖRPER DER REIHE TJ


Туре		TJ %4"-2	TJ %"-2,5	TJ %"-3,3	TJ %"-3,75 15/4	TJ %" E-3,75 ᠩ 🕂	TJ %"-4,5	TJ %" E-4,5 🔝 [+]	TJ %"-6	TJ %" E-6	TJ %/"-9
Bestellnummer		2110353	2110354	2110355	2110356	2110365	2110357	2110366	2110358	2110367	2110360
Leistung	[kW]	2	2,5	3,3	3,75	3,75	4,5	4,5	6	6	9
Einbaulänge L/L1	[mm]	380	405	325	450	450	500	500	520	520	690
Kalter Teil der Heizeinheit (± 10 mm)		175	175	60	175	175	175	175	175	175	175
Gewicht	[kg]	1,2	1,3	1,7	2	2	2	2	2	2	2,3
Elektrischer Anschluss			PE ~ / 50 Hz			3/N/PE ~	3× 230 V /	50 Hz, 人			3/N/PE ~ 400 V / 50 Hz, △
Empfohlener Schutzsicherung	[A]	16	16	3 × 10	3 × 10	3 × 10	3 × 10	3 × 10	3 × 16	3 × 16	3 × 20
Elektrische Schutzart							IP44				
Temperaturbereich	[°C]						5-74				
Heizzeit cca 150 l 10-60 °C	[h]	4,5	4	2,7	2,3	2,3	2	2	1,5	1,5	1


Geeignet für Photovoltaikanwendungen

Bei den Typen TJ %"-2 und TJ %"-2,5 befindet sich ein Flexi-Stromzuführungskabel mit SCHUKO-Stecker.

Die Baulängen sind in einer Toleranz von ± 10 mm.

ELEKTRISCHE FLANSCHHEIZUNG DER REIHEN TPJ, SE

Туре		TPJ 150-8/2,5 KW 🖟 🗗	TPJ 150-8/3,0 KW 150-8/3,0 KW	TPJ 150-8/4,0 kW	TPJ 150-8/6,0 kW	TPJ 150-8/7,5 kW 150-8/7,5	TPJ 150-8/9,0 kW	TPJ 150-8/12 kW	TPJ 150-8/15 kW	SE 377	SE 378
Bestellnummer		2110700	2110701	2110702	2110703	2110704	2110705	2110706	2110707	100541517	100541511
Leistung	[kW]	2,5	3	4	6	7,5	9	12	15	8-11-16	9,5-12,7-19
Gewicht	[kg]	3	3,5	3,5	3,5	3,7	4	4	4,2	8	11,5
Einbaulänge	[mm]				450				580	610	740
Elektrischer Anschluss		1/N/PE ~ 230 V/50 Hz	3/	3/N/PE ~ 3× 230 V/50 Hz, ↓ 3/N/PE ~				E ~ 400 V/5	0 Hz, △		
Empfohlener Schutzsicherung	[A]	16	3 x 10	3 x 10	3 x 16	3 x 16	3 × 20	3 × 20	3 x 25	3 x 25	3 x 32
Elektrische Schutzart					IPX4					IP	20
Heizzeit cca 300 l 10-60 °C	[h]	7	6	4,5	3	2,5	2	1,5	1,3	2 - 2 - 1,3	2 - 1,5 - 1

Geeignet für Photovoltaikanwendungen

Die Baulängen sind in einer Toleranz von ± 10 mm.

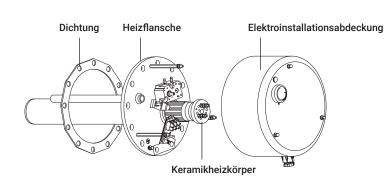
KERAMIKFLANSCHHEIZUNG DER REIHE TPK

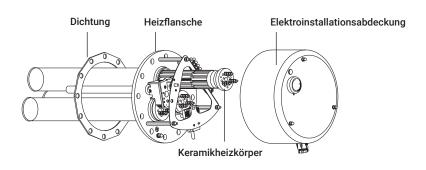
		4	1	#\ <u>\\\</u>	1	1		
Туре		TPK 150-8/2,2	TPK 150-8/3,3 - 1 tauchhülse	TPK 210-12/2,2 - 1 tauchhülse	TPK 210-12/3,3 - 1 tauchhülse	TPK 210-12/6,6	TPK 210-12/9	TPK 210-12/12
Bestellnummer		2110409	2110435	2110437	2110436	2110410	2110430	2110414
Leistung	[kW]	2,2	3,3	2,2	3,3	6,6	9	12
Gewicht	[kg]	4,2	4,5	6,6	12	13	13,6	14
Einbaulänge	[mm]	400	400	440	440	440	550	550
Elektrischer		1/N/PE ~	3/N/PE ~	1/N/PE ~	3/N/	PE ~	3/N/	PE ~
Anschluss		230 V/50 Hz	3× 230 V/50 Hz, 人	230 V/50 Hz	3× 230 V/	′ 50 Hz, 人	400 V/5	50 Hz, △
Empfohlener Schutzsicherung	[A]	16	3 × 10	16	3 × 10	3 × 16	3 × 20	3 × 25
Elektrische Schutzart					IP42			
Temperaturbereich	[°C]				5-74			

Geeignet für Photovoltaikanwendungen

Die Baulängen sind in einer Toleranz von ± 10 mm.

TPK - 3 TAUCHHÜLSEN


NEU


TPK - 1 TAUCHHÜLSE

ZUSAMMENSETZUNG DER EIN- UND DREIPHASIGEN FLANSCHHEIZKÖRPER TPK

TPK - EINPHASIG

TPK - DREIPHASIG

ZUBEHÖRTABELLEN

MÖGLICHKEITEN DER MONTAGE DER ELEKTRISCHEN EINBAU-FLANSCHEINHEITEN DER REIHE TPJ

Туре	TPJ 150-8/2,5 kW	TPJ 150-8/3,0 kW	TPJ 150-8/4,0 kW	TPJ 150-8/6,0 kW	TPJ 150-8/7,5 kW	TPJ 150-8/9,0 kW	TPJ 150-8/12 kW	TPJ 150-8/15 kW
NAD 500 v1	•	•	•	•	•	•	•	-
NAD 750 v1	•	•	•	•	•	•	•	•
NAD 1000 v1	•	•	•	•	•	•	•	•
NAD 1500 v1	•	•	•	•	•	•	•	•
NAD 2000 v1	•	•	•	•	•	•	•	•
NAD 500 v3	•	•	•	•	•	•	•	-
NAD 750 v3	•	•	•	•	•	•	•	•
NAD 1000 v3	•	•	•	•	•	•	•	•
NAD 500 v4	•	•	•	•	•	•	_	-
NAD 750 v4	•	•	•	•	•	•	•	-
NAD 1000 v4	•	•	•	•	•	•	•	•
NADO 500/140 v1	•	•	•	•	•	•	•	-
NADO 750/140 v1	•	•	•	•	•	•	•	•
NADO 1000/140 v1	•	•	•	•	•	•	•	•
NADO 500/200 v1	•	•	•	•	•	•	•	-
NADO 750/200 v1	•	•	•	•	•	•	•	•
NADO 1000/200 v1	•	•	•	•	•	•	•	•
NADO 500/140 v2	•	•	•	•	•	•	-	-
NADO 750/140 v2	•	•	•	•	•	•	•	-
NADO 1000/140 v2	•	•	•	•	•	•	•	•
NADO 300/20 v11	•	•	•	•	•	•	-	-
NADO 400/20 v11	•	•	•	•	•	•	-	-
NADO 750/25 v11	•	•	•	•	•	•	•	-
NADO 1000/25 v11	•	•	•	•	•	•	•	•

[•] kann nur mit Reduktionsflansch 210/150 eingebaut werden, – kann nicht eingebaut werden

MÖGLICHKEITEN DER MONTAGE DER ELEKTRISCHEN EINBAU-FLANSCHEINHEITEN DER REIHE TPK

Туре	ТРК 150-8/2,2 кW	TPK 150-8/3,3 kW	TPK 210-12/2,2 kW	TPK 210-12/3,3 kW	TPK 210-12/6,6 kW	TPK 210-12/9 kW	TPK 210-12/12 kW
NAD 500 v1	_	_	A	A	A	A	A
NAD 750 v1	-	-	A	A	A	A	A
NAD 1000 v1	_	-	A	A	A	A	A
NAD 1500 v1	-	-	A	A	A	A	A
NAD 2000 v1	-	-	A	A	A	A	A
NAD 500 v3	-	-	A	A	A	A	A
NAD 750 v3	-	-	A	A	A	A	A
NAD 1000 v3	-	-	A	A	A	A	A
NAD 500 v4	_	-	A	A	A	-	-
NAD 750 v4	-	-	A	A	A	A	A
NAD 1000 v4	-	-	A	A	A	A	A
NADO 500/140 v1	-	-	A	A	A	A	A
NADO 750/140 v1	_	-	A	A	A	A	A
NADO 1000/140 v1	-	-	A	A	A	A	A
NADO 500/200 v1	-	-	A	A	A	A	A
NADO 750/200 v1	-	-	A	A	A	A	A
NADO 1000/200 v1	_	_	A	A	A	A	A
NADO 500/140 v2	-	-	A	A	A	-	-
NADO 750/140 v2	-	-	A	A	A	A	A
NADO 1000/140 v2	-	-	A	A	A	A	A
NADO 300/20 v11	-	-	A	A	A	-	-
NADO 400/20 v11	-	-	A	A	A	-	-
NADO 750/25 v11	-	-	A	A	A	A	A
NADO 1000/25 v11	-	-	A	A	A	A	A

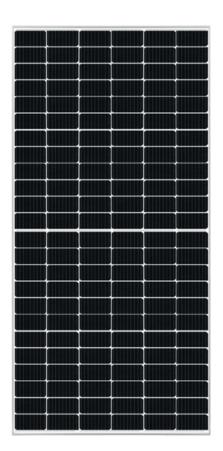
[▲] kann eingebaut werden, – kann nicht eingebaut werden

ZUBEHÖRTABELLEN

MÖGLICHKEITEN DER MONTAGE DER ELEKTRISCHEN EINSCHRAUBHEIZKÖRPER DER REIHE TJ

				* 10	*		
	-te	- 2,5 *	m	- 3,75 * E - 3,75	- 4,5 * E - 4,5 *	* *	
Туре	- 2 *	.2	. 33	. 3, 	4 -	- 6 * E - 6	* 6 -
	1.4	14	1.4	14/	TJ %".	14/	
	TJ %"."	TJ %".	TJ %"	TJ %"."	TJ %".	TJ %" T	TJ %","
NAD 50 v1	A	A	A	-	_	-	_
NAD 100 v1	<u> </u>			A	A		-
NAD 200 v1		_	_	A	_	_	_
NAD 500 v1	_	_		<u> </u>	<u> </u>		-
NAD 750 v1	<u> </u>	<u> </u>		A	<u> </u>		A
NAD 1000 v1	<u> </u>	<u> </u>		A	<u> </u>	<u> </u>	<u> </u>
NAD 1500 v1	A	A	A	A	A	A	A
NAD 2000 v1	A	A	A	A	A		A
NAD 500 v2	A	A	A	A	A	A	-
NAD 750 v2	A	A	A	A	A	A	A
NAD 1000 v2	A	A	A	A	A	A	A
NAD 1500 v2	A	A	A	A	A	A	A
NAD 2000 v2	A	A	A	A	A	A	A
NAD 300 v3	A	A	A	A	A	A	-
NAD 500 v3	A	A	A	A	A	A	-
NAD 750 v3	A	A	A	A	A	A	A
NAD 1000 v3	A	A	A	A	A	A	A
NAD 500 v4	A	A	A	A	A	A	-
NAD 750 v4	A	A	A	A	A	A	A
NAD 1000 v4	A	A	A	A	A	A	A
NADO 500/140 v1	A	A	A	A	A	A	-
NADO 750/140 v1	A	A	A	A	A	A	A
NADO 1000/140 v1	A	A	A	A	A	A	A
NADO 500/140 v2	A	A	A	A	A	A	-
NADO 750/140 v2	A	A	A	A	A	A	A
NADO 1000/140 v2	A	A	A	A	A	A	A
NADO 300/20 v6	A	A	_	A	A	-	-
NADO 500/25 v6	A	A	-	A	A	A	-
NADO 750/35 v6	A	A	-	A	A	A	-
NADO 1000/45 v6	A	A	-	A	A	A	-
NADO 300/20 v11	A	A	A	A	A	A	-
NADO 400/20 v11	A	A	A	A	A	A	-
NADO 750/25 v11	A	A	A	A	A	A	A
NADO 1000/25 v11	A	A	A	A	A	A	A
NADS 800 v3	A	A	A	A	A	A	A
NADOS 800/140 v1	A	A	A	A	A	A	A
NADOS 800/140 v2	A	A	A	A	A	A	A

^{*} mit verlängertem Kühlelement, \blacktriangle kann eingebaut werden, – kann nicht eingebaut werden



WEITERE PRODUKTE

PHOTOVOLTAIK-LÖSUNGEN WARMWASSERSPEICHER KLIMAANLAGEN Komplette Photovoltaik-Lösungen für Ihr Haus.

Mehr Infos sind folgendem Web zu entnehmen: www.dzd-solar.cz.

Warmwasserbereiter – Warmwasserspeicher werden in mehr als 380 Ausführungen von 5 bis 1000 Litern hergestellt.

Grundeinteilung nach Art der Montageposition:

- Hängespeicher senkrecht und waagerecht
- stationär

Mehr Infos sind folgendem Web zu entnehmen: https://dzd.cz/de/ohrivace-a-zasobniky-teple-vody

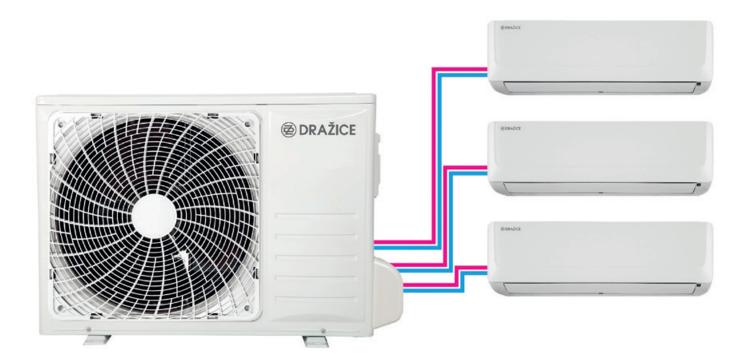
AIR

SPLIT AIR ist eine für Wohnungen, Familienhäuser, Büros oder kleinere Betriebsräume bestimmte Klimaanlage.

Die Klimaanlage besteht aus einer Außeneinheit, einer Inneneinheit und einer cleveren Fernbedienung.

Alle drei Leistungsvarianten der AIR Klimatisierung gewährleisten:

- Kühlung
- Heizung
- Lüftung
- Trocknen


Mehr Infos sind folgendem Web zu entnehmen https://dzd.cz/de/klimatizacni-jednotky

Die Multisplit AIR PLUS Klimaanlagen sind für Systeme mit Anforderungen an mehrere Inneneinheiten vorgesehen.

Eine passend dimensionierte Außeneinheit ist in dieser Lösung mit zwei bis vier Inneneinheiten von identischen oder unterschiedlichen Leistungen vervollständigt, sodass die Projektanforderungen optimal erfüllt sind.

Durch die Kombination von drei Arten an Außeneinheiten und vier Arten an Inneneinheiten kann man praktisch jede Konfiguration des Kühl- und Heizsystems genau nach Ihrem Wunsch und Bedarf erreichen.

Mehr Infos sind folgendem Web zu entnehmen https://dzd.cz/de/klimatizacni-jednotky

DRUŽSTEVNÍ ZÁVODY DRAŽICE-STROJÍRNA s.r.o.

Dražice 69, 294 71 Benátky nad Jizerou Tschechische Republik

tel.: +420/326 370 961 e-mail: export@dzd.cz www.dzd.cz/de

